Ammonium thiocyanate

Ammonium thiocyanate is an inorganic compound with the formula NH4SCN. It is the salt of the ammonium cation and the thiocyanate anion.

Ammonium thiocyanate
Space-filling model of the ammonium cation
Space-filling model of the thiocyanate anion
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.015.614
PubChem CID
RTECS number
  • XN6465000
UNII
CompTox Dashboard (EPA)
Properties
Chemical formula
NH4SCN
Molar mass 76.122 g/mol
Appearance Colorless hygroscopic crystalline solid
Density 1.305 g/cm3
Melting point 149.5 °C (301.1 °F; 422.6 K)
Boiling point 170 °C (338 °F; 443 K) (decomposes)
Solubility in water
128 g/100 mL (0 °C)
Solubility soluble in liquid ammonia, alcohol, acetone
Magnetic susceptibility (χ)
-48.1·10−6 cm3/mol
Hazards
Safety data sheet External MSDS
NFPA 704 (fire diamond)
1
2
1
Related compounds
Other anions
Ammonium cyanate
Ammonium cyanide
Other cations
Sodium thiocyanate
Potassium thiocyanate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Uses

Ammonium thiocyanate is used in the manufacture of herbicides, thiourea, and transparent artificial resins; in matches; as a stabilizing agent in photography; in various rustproofing compositions; as an adjuvant in textile dyeing and printing; as a tracer in oil fields; in the separation of hafnium from zirconium, and in titrimetric analyses.

In May 1945, USAAF General Victor E. Betrandias advanced a proposal to his superior General Arnold to use of ammonium thiocyanate to reduce rice crops in Japan as part of the bombing raids on their country.[1]

Ammonium thiocyanate can also be used to determine the iron content in soft drinks by colorimetry.

Preparation

Ammonium thiocyanate is made by the reaction of carbon disulfide with aqueous ammonia. Ammonium dithiocarbamate is formed as an intermediate in this reaction, which upon heating, decomposes to ammonium thiocyanate and hydrogen sulfide:

CS2 + 2 NH3(aq) → NH2C(=S)SNH4 → NH4SCN + H2S

Reactions

Ammonium thiocyanate is stable in air; however, upon heating it isomerizes to thiourea:

The equilibrium mixtures at 150 °C and 180 °C contain 30.3% and 25.3% (by weight) thiourea, respectively. When heated at 200 °C, the dry powder decomposes to ammonia, hydrogen sulfide, and carbon disulfide, leaving a residue of guanidinium thiocyanate.

NH4SCN is weakly acidic due to the ammonium ion; it reacts with alkali hydroxides, such as sodium hydroxide or potassium hydroxide to form sodium thiocyanate or potassium thiocyanate, along with water and ammonia. The thiocyanate anion, specifically, reacts with ferric salts to form a deep-red ferric thiocyanate complex:

6 SCN + Fe3+ → [Fe(SCN)6]3−

Ammonium thiocyanate reacts with several metal ions including copper, silver, zinc, lead, and mercury, forming their thiocyanate precipitates, which may be extracted into organic solvents.

References

  1. John David Chappell (1997). Before the Bomb: How America Approached the End of the Pacific War. University Press of Kentucky. pp. 91–92. ISBN 978-0-8131-7052-7.
  1. A. F. Wells, Structural Inorganic Chemistry, 5th ed., Oxford University Press, Oxford, UK, 1984. ISBN 978-0198553700