Bismuth-209, 209Bi
General
Symbol209Bi
Namesbismuth-209, 209Bi, Bi-209
Protons (Z)83
Neutrons (N)126
Nuclide data
Natural abundance100%
Half-life (t1/2)2.01×1019 years[1]
Isotope mass208.9803986 Da
Spin9/2−
Excess energy−18258.461±2.4 keV
Binding energy7847.987±1.7 keV
Parent isotopes209Pb (β)
209Po (β+)
213At (α)
Decay products205Tl
Decay modes
Decay modeDecay energy (MeV)
Alpha emission3.1373
Isotopes of bismuth
Complete table of nuclides

Bismuth-209 (209Bi) is an isotope of bismuth, with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number[2] of 126 neutrons,[2] and an atomic mass of 208.9803987 amu (atomic mass units). Primordial bismuth consists entirely of this isotope.

Decay properties

Bismuth-209 was long thought to have the heaviest stable nucleus of any element, but in 2003, a research team at the Institut d’Astrophysique Spatiale in Orsay, France, discovered that 209Bi undergoes alpha decay with a half-life of ≈19 exayears (1.9×1019, or 19 quintillion years),[3][4] over 109 times longer than the estimated age of the universe.[5] The heaviest nucleus considered to be stable is now lead-208 and the heaviest stable monoisotopic element is gold (gold-197).

Theory had previously predicted a half-life of 4.6×1019 years. It had been suspected to be radioactive for a long time.[6] The decay produces a 3.14 MeV alpha particle plus thallium-205.[3][4]

Bismuth-209 occurs in the neptunium series decay chain.

Bismuth-209 forms 205Tl:

209
83
Bi
205
81
Tl
+ 4
2
He
[7]

If perturbed, it would join in lead-bismuth neutron capture cycle from lead-206/207/208 to bismuth-209, despite low capture cross sections. Even thallium-205, the decay product of bismuth-209, reverts to lead when fully ionized.[8]

Due to its hugely long half-life, for nearly all applications 209Bi can be treated as non-radioactive. It is much less radioactive than human flesh, so it poses no real radiation hazard. Though 209Bi holds the half-life record for alpha decay, it does not have the longest known half-life of any nuclide; this distinction belongs to tellurium-128 (128Te) with a half-life estimated at 7.7 × 1024 years by double β-decay (double beta decay).[9][10][11]

The half-life of 209Bi was confirmed in 2012 by an Italian team in Gran Sasso who reported (2.01±0.08)×1019 years. They also reported an even longer half-life for alpha decay of 209Bi to the first excited state of 205Tl (at 204 keV), was estimated at 1.66×1021 years.[12] Even though this value is shorter than the half-life of 128Te, both alpha decays of 209Bi hold the record of the thinnest natural line widths of any measurable physical excitation, estimated respectively at ΔΕ~5.5×10−43 eV and ΔΕ~1.3×10−44 eV in application of the uncertainty principle[13] (double beta decay would produce energy lines only in neutrinoless transitions, which has not been observed yet).

Applications

Because all primordial bismuth is bismuth-209, bismuth-209 is used for all normal applications of bismuth, such as being used as a replacement for lead,[14][15] in cosmetics,[16][17] in paints,[18] and in several medicines such as Pepto-Bismol.[5][19][20] Alloys containing bismuth-209 such as bismuth bronze have been used for thousands of years.[21]

Synthesis of other elements

210Po can be manufactured by bombarding 209Bi with neutrons in a nuclear reactor.[22] Only around 100 grams of 210Po are produced each year.[23][22] 209Po and 208Po can be made through the proton bombardment of 209Bi in a cyclotron.[24] Astatine can also be produced by bombarding 209Bi with alpha particles.[25][26][27] Traces of 209Bi have also been used to create gold in nuclear reactors.[28][29]

209Bi has been used as a target for the creation of several isotopes of superheavy elements such as dubnium,[30][31][32][33] bohrium,[30][34] meitnerium,[35][36][37] roentgenium,[38][39][40] and nihonium.[41][42][43]

Formation

Primordial

Bismuth-209 is created in the final part of the s-process.[lower-alpha 1]

In the red giant stars of the asymptotic giant branch, the s-process (slow process) is ongoing to produce bismuth-209 and polonium-210 by neutron capture as the heaviest elements to be formed,[44] and the latter quickly decays.[44] All elements heavier than it are formed in the r-process, or rapid process, which occurs during the first fifteen minutes of supernovas.[45][44] Bismuth-209 is also created during the r-process.[44]

Radiogenic

Some 209Bi was created radiogenically from the neptunium decay chain.[46] Neptunium-237 is an extinct radionuclide, but it can be found in traces in uranium ores because of neutron capture reactions.[46][47] Americium-241, which is used in smoke detectors,[48] decays to neptunium-237.

See also

Notes

  1. Red horizontal lines with a circle in their right ends represent neutron captures; blue arrows pointing up-left represent beta decays; green arrows pointing down-left represent alpha decays; cyan/light-green arrows pointing down-right represent electron captures.

References

  1. Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  2. 1 2 Blank, B.; Regan, P.H. (2000). "Magic and doubly-magic nuclei". Nuclear Physics News. 10 (4): 20–27. doi:10.1080/10506890109411553. S2CID 121966707.
  3. 1 2 Dumé, Belle (2003-04-23). "Bismuth breaks half-life record for alpha decay". Physicsweb.
  4. 1 2 Marcillac, Pierre de; Noël Coron; Gérard Dambier; Jacques Leblanc; Jean-Pierre Moalic (April 2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature. 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID 12712201. S2CID 4415582.
  5. 1 2 Kean, Sam (2011). The Disappearing Spoon (and other true tales of madness, love, and the history of the world from the Periodic Table of Elements). New York/Boston: Back Bay Books. pp. 158–160. ISBN 978-0-316-051637.
  6. Carvalho, H. G.; Penna, M. (1972). "Alpha-activity of 209
    Bi
    ". Lettere al Nuovo Cimento. 3 (18): 720. doi:10.1007/BF02824346. S2CID 120952231.
  7. "Isotope data for americium-241 in the Periodic Table".
  8. Takahashi, K; Boyd, R. N.; Mathews, G. J.; Yokoi, K. (October 1987). "Bound-state beta decay of highly ionized atoms". Physical Review C. 36 (4): 1522–1528. Bibcode:1987PhRvC..36.1522T. doi:10.1103/PhysRevC.36.1522. ISSN 0556-2813. OCLC 1639677. PMID 9954244. Retrieved 2016-11-20.
  9. "Noble Gas Research". Archived from the original on 2011-09-28. Retrieved 2013-01-10. Tellurium-128 information and half-life. Accessed July 14, 2009.
  10. Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A. H. (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A. 729 (1). Atomic Mass Data Center: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
  11. "WWW Table of Radioactive Isotopes: Tellurium". Nuclear Science Division, Lawrence Berkeley National Laboratory. 2008. Archived from the original on 2010-02-05. Retrieved 2010-01-16.
  12. J.W. Beeman; et al. (2012). "First Measurement of the Partial Widths of 209Bi Decay to the Ground and to the First Excited States". Physical Review Letters. 108 (6): 062501. arXiv:1110.3138. Bibcode:2012PhRvL.108f2501B. doi:10.1103/PhysRevLett.108.062501. PMID 22401058. S2CID 118686992.
  13. "Particle lifetimes from the uncertainty principle".
  14. Hopper KD; King SH; Lobell ME; TenHave TR; Weaver JS (1997). "The breast: inplane x-ray protection during diagnostic thoracic CT—shielding with bismuth radioprotective garments". Radiology. 205 (3): 853–8. doi:10.1148/radiology.205.3.9393547. PMID 9393547.
  15. Lohse, Joachim; Zangl, Stéphanie; Groß, Rita; Gensch, Carl-Otto; Deubzer, Otmar (September 2007). "Adaptation to Scientific and Technical Progress of Annex II Directive 2000/53/EC" (PDF). European Commission. Retrieved 11 September 2009.
  16. Maile, Frank J.; Pfaff, Gerhard; Reynders, Peter (2005). "Effect pigments—past, present and future". Progress in Organic Coatings. 54 (3): 150. doi:10.1016/j.porgcoat.2005.07.003.
  17. Pfaff, Gerhard (2008). Special effect pigments: Technical basics and applications. Vincentz Network GmbH. p. 36. ISBN 978-3-86630-905-0.
  18. B. Gunter "Inorganic Colored Pigments” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012.
  19. Madisch A, Morgner A, Stolte M, Miehlke S (December 2008). "Investigational treatment options in microscopic colitis". Expert Opinion on Investigational Drugs. 17 (12): 1829–37. doi:10.1517/13543780802514500. PMID 19012499. S2CID 72294495.
  20. Merck Index, 11th Edition, 1299
  21. Gordon, Robert B.; Rutledge, John W. (1984). "Bismuth Bronze from Machu Picchu, Peru". Science. 223 (4636). American Association for the Advancement of Science: 585–586. Bibcode:1984Sci...223..585G. doi:10.1126/science.223.4636.585. JSTOR 1692247. PMID 17749940. S2CID 206572055.
  22. 1 2 Roessler, G. (2007). "Why 210Po?" (PDF). Health Physics News. Vol. 35, no. 2. Health Physics Society. Archived (PDF) from the original on 2014-04-03. Retrieved 2019-06-20.
  23. "Swiss study: Polonium found in Arafat's bones". Al Jazeera. Retrieved 2013-11-07.
  24. Carvalho, F.; Fernandes, S.; Fesenko, S.; Holm, E.; Howard, B.; Martin, P.; Phaneuf, P.; Porcelli, D.; Pröhl, G.; Twining, J. (2017). The Environmental Behaviour of Polonium. Technical reports series. Vol. 484. Vienna: International Atomic Energy Agency. p. 22. ISBN 978-92-0-112116-5. ISSN 0074-1914.
  25. Barton, G. W.; Ghiorso, A.; Perlman, I. (1951). "Radioactivity of Astatine Isotopes". Physical Review. 82 (1): 13–19. Bibcode:1951PhRv...82...13B. doi:10.1103/PhysRev.82.13. hdl:2027/mdp.39015086480574. (subscription required)
  26. Larsen, R. H.; Wieland, B. W.; Zalutsky, M. R. J. (1996). "Evaluation of an Internal Cyclotron Target for the Production of 211At via the 209Bi (α,2n)211At reaction". Applied Radiation and Isotopes. 47 (2): 135–143. doi:10.1016/0969-8043(95)00285-5. PMID 8852627.
  27. Nefedov, V. D.; Norseev, Yu. V.; Toropova, M. A.; Khalkin, Vladimir A. (1968). "Astatine". Russian Chemical Reviews. 37 (2): 87–98. Bibcode:1968RuCRv..37...87N. doi:10.1070/RC1968v037n02ABEH001603. S2CID 250775410. (subscription required)
  28. Aleklett, K.; Morrissey, D.; Loveland, W.; McGaughey, P.; Seaborg, G. (1981). "Energy dependence of 209Bi fragmentation in relativistic nuclear collisions". Physical Review C. 23 (3): 1044. Bibcode:1981PhRvC..23.1044A. doi:10.1103/PhysRevC.23.1044.
  29. Matthews, Robert (2 December 2001). "The Philosopher's Stone". The Daily Telegraph. Retrieved 22 September 2020.
  30. 1 2 Munzenberg; Hofmann, S.; Heßberger, F. P.; Reisdorf, W.; Schmidt, K. H.; Schneider, J. H. R.; Armbruster, P.; Sahm, C. C.; Thuma, B. (1981). "Identification of element 107 by α correlation chains". Z. Phys. A. 300 (1): 107–108. Bibcode:1981ZPhyA.300..107M. doi:10.1007/BF01412623. S2CID 118312056.
  31. Hessberger, F. P.; Münzenberg, G.; Hofmann, S.; Agarwal, Y. K.; Poppensieker, K.; Reisdorf, W.; Schmidt, K.-H.; Schneider, J. R. H.; Schneider, W. F. W.; Schött, H. J.; Armbruster, P.; Thuma, B.; Sahm, C.-C.; Vermeulen, D. (1985). "The new isotopes 258105,257105,254Lr and 253Lr". Z. Phys. A. 322 (4): 4. Bibcode:1985ZPhyA.322..557H. doi:10.1007/BF01415134. S2CID 100784990.
  32. F. P. Hessberger; Hofmann, S.; Ackermann, D.; Ninov, V.; Leino, M.; Münzenberg, G.; Saro, S.; Lavrentev, A.; Popeko, A.G.; Yeremin, A.V.; Stodel, Ch. (2001). "Decay properties of neutron-deficient isotopes 256,257Db,255Rf, 252,253Lr". Eur. Phys. J. A. 12 (1): 57–67. Bibcode:2001EPJA...12...57H. doi:10.1007/s100500170039. S2CID 117896888. Archived from the original on 2002-05-10.
  33. Leppänen, A.-P. (2005). Alpha-decay and decay-tagging studies of heavy elements using the RITU separator (PDF) (Thesis). University of Jyväskylä. pp. 83–100. ISBN 978-951-39-3162-9. ISSN 0075-465X.
  34. Nelson, S.; Gregorich, K.; Dragojević, I.; Garcia, M.; Gates, J.; Sudowe, R.; Nitsche, H. (2008). "Lightest Isotope of Bh Produced via the Bi209(Cr52,n)Bh260 Reaction". Physical Review Letters. 100 (2): 22501. Bibcode:2008PhRvL.100b2501N. doi:10.1103/PhysRevLett.100.022501. PMID 18232860. S2CID 1242390.
  35. Münzenberg, G.; et al. (1982). "Observation of one correlated α-decay in the reaction 58Fe on 209Bi→267109". Zeitschrift für Physik A. 309 (1): 89–90. Bibcode:1982ZPhyA.309...89M. doi:10.1007/BF01420157. S2CID 120062541.
  36. Münzenberg, G.; Hofmann, S.; Heßberger, F. P.; et al. (1988). "New results on element 109". Zeitschrift für Physik A. 330 (4): 435–436. Bibcode:1988ZPhyA.330..435M. doi:10.1007/BF01290131. S2CID 121364541.
  37. Hofmann, S.; Heßberger, F. P.; Ninov, V.; et al. (1997). "Excitation function for the production of 265108 and 266109". Zeitschrift für Physik A. 358 (4): 377–378. Bibcode:1997ZPhyA.358..377H. doi:10.1007/s002180050343. S2CID 124304673.
  38. Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; et al. (1995). "The new element 111". Zeitschrift für Physik A. 350 (4): 281–282. Bibcode:1995ZPhyA.350..281H. doi:10.1007/BF01291182. S2CID 18804192.
  39. Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Münzenberg, G.; Antalic, S.; Cagarda, P.; Kindler, B.; Kojouharova, J.; et al. (2002). "New results on elements 111 and 112". The European Physical Journal A. 14 (2): 147–157. Bibcode:2002EPJA...14..147H. doi:10.1140/epja/i2001-10119-x. S2CID 8773326.
  40. Morita, K.; Morimoto, K. K.; Kaji, D.; Goto, S.; Haba, H.; Ideguchi, E.; Kanungo, R.; Katori, K.; Koura, H.; Kudo, H.; Ohnishi, T.; Ozawa, A.; Peter, J. C.; Suda, T.; Sueki, K.; Tanihata, I.; Tokanai, F.; Xu, H.; Yeremin, A. V.; Yoneda, A.; Yoshida, A.; Zhao, Y.-L.; Zheng, T. (2004). "Status of heavy element research using GARIS at RIKEN". Nuclear Physics A. 734: 101–108. Bibcode:2004NuPhA.734..101M. doi:10.1016/j.nuclphysa.2004.01.019.
  41. Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-Ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; et al. (2004). "Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn, n)278113". Journal of the Physical Society of Japan. 73 (10): 2593–2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593.
  42. Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011). "Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)". Pure and Applied Chemistry. 83 (7): 1485. doi:10.1351/PAC-REP-10-05-01.
  43. K. Morita; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo; Yoneda, Akira; Tanaka, Kengo; et al. (2012). "New Results in the Production and Decay of an Isotope, 278113, of the 113th Element". Journal of the Physical Society of Japan. 81 (10): 103201. arXiv:1209.6431. Bibcode:2012JPSJ...81j3201M. doi:10.1143/JPSJ.81.103201. S2CID 119217928.
  44. 1 2 3 4 Burbidge, E. M.; Burbidge, G. R.; Fowler, W. A.; Hoyle, F. (1957). "Synthesis of the Elements in Stars". Reviews of Modern Physics. 29 (4): 547–650. Bibcode:1957RvMP...29..547B. doi:10.1103/RevModPhys.29.547.
  45. Chaisson, Eric, and Steve McMillan. Astronomy Today. 6th ed. San Francisco: Pearson Education, 2008.
  46. 1 2 Peppard, D. F.; Mason, G. W.; Gray, P. R.; Mech, J. F. (1952). "Occurrence of the (4n + 1) series in nature" (PDF). Journal of the American Chemical Society. 74 (23): 6081–6084. doi:10.1021/ja01143a074.
  47. C. R. Hammond (2004). The Elements, in Handbook of Chemistry and Physics (81st ed.). CRC press. ISBN 978-0-8493-0485-9.
  48. "Smoke Detectors and Americium". Nuclear Issues Briefing Paper. 35. Uranium Information Centre. May 2002. Archived from the original on 3 March 2008. Retrieved 2 September 2022.{{cite journal}}: CS1 maint: unfit URL (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.