Isotopes of osmium (76Os)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
184Os 0.02% 1.12×1013 y[2] α 180W
185Os synth 92.95 d ε 185Re
186Os 1.59% 2.0×1015 y α 182W
187Os 1.96% stable
188Os 13.2% stable
189Os 16.1% stable
190Os 26.3% stable
191Os synth 14.99 d β 191Ir
192Os 40.8% stable
193Os synth 29.83 h β 193Ir
194Os synth 6 y β 194Ir
Standard atomic weight Ar°(Os)
  • 190.23±0.03[3]
  • 190.23±0.03 (abridged)[4]

Osmium (76Os) has seven naturally occurring isotopes, five of which are stable: 187Os, 188Os, 189Os, 190Os, and (most abundant) 192Os. The other natural isotopes, 184Os, and 186Os, have extremely long half-life (1.12×1013 years and 2×1015 years, respectively) and for practical purposes can be considered to be stable as well. 187Os is the daughter of 187Re (half-life 4.12×1010 years) and is most often measured in an 187Os/188Os ratio. This ratio, as well as the 187Re/188Os ratio, have been used extensively in dating terrestrial as well as meteoric rocks. It has also been used to measure the intensity of continental weathering over geologic time and to fix minimum ages for stabilization of the mantle roots of continental cratons. However, the most notable application of Os in dating has been in conjunction with iridium, to analyze the layer of shocked quartz along the Cretaceous–Paleogene boundary that marks the extinction of the dinosaurs 66 million years ago.

There are also 31 artificial radioisotopes,[5] the longest-lived of which is 194Os with a half-life of six years; all others have half-lives under 93 days. There are also ten known nuclear isomers, the longest-lived of which is 191mOs with a half-life of 13.10 hours. All isotopes and nuclear isomers of osmium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Uses of osmium isotopes

The isotopic ratio of osmium-187 and osmium-188 (187Os/188Os) can be used as a window into geochemical changes throughout the ocean's history.[6] The average marine 187Os/188Os ratio in oceans is 1.06.[6] This value represents a balance of the continental derived riverine inputs of Os with a 187Os/188Os ratio of ~1.3, and the mantle/extraterrestrial inputs with a 187Os/188Os ratio of ~0.13.[6] Being a descendant of 187Re, 187Os can be radiogenically formed by beta decay.[7] This decay has actually pushed the 187Os/188Os ratio of the Bulk silicate earth (Earth minus the core) by 33%.[8] This is what drives the difference in the 187Os/188Os ratio we see between continental materials and mantle material. Crustal rocks have a much higher level of Re, which slowly degrades into 187Os driving up the ratio.[7] Within the mantle however, the uneven response of Re and Os results in these mantle, and melted materials being depleted in Re, and do not allow for them to accumulate 187Os like the continental material.[7] The input of both materials in the marine environment results in the observed 187Os/188Os of the oceans and has fluctuated greatly over the history of our planet. These changes in the isotopic values of marine Os can be observed in the marine sediment that is deposited, and eventually lithified in that time period.[9] This allows for researchers to make estimates on weathering fluxes, identifying flood basalt volcanism, and impact events that may have caused some of our largest mass extinctions. The marine sediment Os isotope record has been used to identify and corroborate the impact of the K-T boundary for example.[10] The impact of this ~10 km asteroid massively altered the 187Os/188Os signature of marine sediments at that time. With the average extraterrestrial 187Os/188Os of ~0.13 and the huge amount of Os this impact contributed (equivalent to 600,000 years of present-day riverine inputs) lowered the global marine 187Os/188Os value of ~0.45 to ~0.2.[6]

Os isotope ratios may also be used as a signal of anthropogenic impact.[11] The same 187Os/188Os ratios that are common in geological settings may be used to gauge the addition of anthropogenic Os through things like catalytic converters.[11] While catalytic converters have been shown to drastically reduce the emission of NOx and CO, they are introducing platinum group elements (PGE) such as Os, to the environment.[11] Other sources of anthropogenic Os include combustion of fossil fuels, smelting chromium ore, and smelting of some sulfide ores. In one study, the effect of automobile exhaust on the marine Os system was evaluated. Automobile exhaust 187Os/188Os has been recorded to be ~0.2 (similar to extraterrestrial and mantle derived inputs) which is heavily depleted (3, 7). The effect of anthropogenic Os can be seen best by comparing aquatic Os ratios and local sediments or deeper waters. Impacted surface waters tend to have depleted values compared to deep ocean and sediments beyond the limit of what is expected from cosmic inputs.[11] This increase in effect is thought to be due to the introduction of anthropogenic airborne Os into precipitation.

The long half-life of 184Os with respect to alpha decay to 180W has been proposed as a radiometric dating method for osmium-rich rocks or for differentiation of a planetary core.[2][12][13]

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da)[14]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode[1]
[n 5]
Daughter
isotope
[n 6][n 7]
Spin and
parity[1]
[n 8][n 9]
Natural abundance (mole fraction)
Excitation energy Normal proportion[1] Range of variation
160Os[15] 76 84 97+97
−32
 μs
α 156W 0+
160mOs[15] 1844(18) keV 41+15
−9
 μs
α 156W 8+
161Os 76 85 160.98905(43)# 0.64(6) ms α 157W (7/2–)
162Os 76 86 161.98443(32)# 2.1(1) ms α 158W 0+
163Os 76 87 162.98246(32)# 5.7(5) ms α 159W 7/2–
β+ ? 163Re
164Os 76 88 163.97807(16) 21(1) ms α (96%) 160W 0+
β+ (4%) 164Re
165Os 76 89 164.97665(22)# 71(3) ms α (90%) 161W (7/2–)
β+ (10%) 165Re
166Os 76 90 165.972698(19) 213(5) ms α (83%) 162W 0+
β+ (17%) 166Re
167Os 76 91 166.971552(87) 839(5) ms α (51%) 163W 7/2–
β+ (49%) 167Re
167mOs 434.3(11) keV 0.672(7) μs IT 167Os 13/2+
168Os 76 92 167.967799(11) 2.1(1) s β+ (57%) 168Re 0+
α (43%) 164W
169Os 76 93 168.967018(28) 3.46(11) s β+ (86.3%) 169Re (5/2–)
α (13.7%) 165W
170Os 76 94 169.963579(10) 7.37(18) s β+ (90.5%) 170Re 0+
α (9.5%) 166W
171Os 76 95 170.963180(20) 8.3(2) s β+ (98.20%) 171Re (5/2−)
α (1.80%) 167W
172Os 76 96 171.960017(14) 19.2(9) s β+ (98.81%) 172Re 0+
α (1.19%) 168W
173Os 76 97 172.959808(16) 22.4(9) s β+ (99.6%) 173Re 5/2–
α (0.4%) 169W
174Os 76 98 173.957063(11) 44(4) s β+ (99.98%) 174Re 0+
α (.024%) 170W
175Os 76 99 174.956945(13) 1.4(1) min β+ 175Re (5/2−)
176Os 76 100 175.954770(12) 3.6(5) min β+ 176Re 0+
177Os 76 101 176.954958(16) 3.0(2) min β+ 177Re 1/2−
178Os 76 102 177.953253(15) 5.0(4) min β+ 178Re 0+
179Os 76 103 178.953816(17) 6.5(3) min β+ 179Re 1/2–
179m1Os 145.41(12) keV ~500 ns IT 179Os (7/2)–
179m2Os 243.0(8) keV 783(14) ns IT 179Os (9/2)+
180Os 76 104 179.952382(17) 21.5(4) min β+ 180Re 0+
181Os 76 105 180.953247(27) 105(3) min β+ 181Re 1/2−
181m1Os 49.20(14) keV 2.7(1) min β+ 181Re 7/2−
181m2Os 156.91(15) keV 262(6) ns IT 181Os 9/2+
182Os 76 106 181.952110(23) 21.84(20) h EC 182Re 0+
182m1Os 1831.4(3) keV 780(70) μs IT 182Os 8–
182m2Os 7049.5(4) keV 150(10) ns IT 182Os 25+
183Os 76 107 182.953125(53) 13.0(5) h β+ 183Re 9/2+
183mOs 170.73(7) keV 9.9(3) h β+ (85%) 183Re 1/2−
IT (15%) 183Os
184Os[n 10] 76 108 183.95249292(89) 1.12(23)×1013 y α[n 11] 180W 0+ 2(2)×10−4
185Os 76 109 184.95404597(89) 92.95(9) d EC 185Re 1/2−
185m1Os 102.37(11) keV 3.0(4) μs IT 185Os 7/2−
185m2Os 275.53(12) keV 0.78(5) μs IT 185Os 11/2+
186Os[n 10] 76 110 185.95383757(82) 2.0(11)×1015 y α 182W 0+ 0.0159(64)
187Os[n 12] 76 111 186.95574957(79) Observationally Stable[n 13] 1/2− 0.0196(17)
187m1Os 100.45(4) keV 112(6) ns IT 187Os 7/2−
187m2Os 257.10(7) keV 231(2) μs IT 187Os 11/2+
188Os[n 12] 76 112 187.95583729(79) Observationally Stable[n 14] 0+ 0.1324(27)
189Os 76 113 188.95814595(72) Observationally Stable[n 15] 3/2− 0.1615(23)
189mOs 30.82(2) keV 5.81(10) h IT 189Os 9/2−
β 189Ir
190Os 76 114 189.95844544(70) Observationally Stable[n 16] 0+ 0.2626(20)
190mOs 1705.7(1) keV 9.86(3) min IT 190Os 10−
191Os 76 115 190.96092811(71) 14.99(2) d β 191Ir 9/2−
191mOs 74.382(3) keV 13.10(5) h IT 191Os 3/2−
192Os 76 116 191.9614788(25) Observationally Stable[n 17] 0+ 0.4078(32)
192m1Os 2015.40(11) keV 5.94(9) s IT 192Os 10−
β? 192Ir
192m2Os 4580.3(10) keV 205(7) ns IT 192Os (20+)
193Os 76 117 192.9641496(25) 29.830(18) h β 193Ir 3/2−
193mOs 315.6(3) keV 121(28) ns IT 192Os (9/2−)
194Os 76 118 193.9651794(26) 6.0(2) y β 194Ir 0+
195Os 76 119 194.968318(60) 6.5(11) min β 195Ir (3/2−)
195mOs 427.8(3) keV 47(3) s IT 195Os (13/2+)
β? 195Ir
196Os 76 120 195.969643(43) 34.9(2) min β 196Ir 0+
197Os 76 121 196.97308(22)# 93(7) s β 197Ir 5/2−#
198Os 76 122 197.97466(22)# 125(28) s β 198Ir 0+
199Os 76 123 198.97824(22)# 6(3) s β 199Ir 5/2−#
200Os 76 124 199.98009(32)# 7(4) s β 200Ir 0+
201Os 76 125 200.98407(32)# 3# s [>300ns] β? 201Ir 1/2−#
202Os 76 126 201.98655(43)# 2# s [>300ns] β? 202Ir 0+
203Os 76 127 202.99220(43)# 300# ms [>300ns] β? 203Ir 9/2+#
β n? 202Ir
This table header & footer:
  1. mOs  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life  nearly stable, half-life longer than age of universe.
  5. Modes of decay:
    EC:Electron capture
    IT:Isomeric transition
    p:Proton emission
  6. Bold italics symbol as daughter  Daughter product is nearly stable.
  7. Bold symbol as daughter  Daughter product is stable.
  8. () spin value  Indicates spin with weak assignment arguments.
  9. #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  10. 1 2 primordial radionuclide
  11. Theorized to also undergo β+β+ decay to 184W
  12. 1 2 Used in rhenium-osmium dating
  13. Believed to undergo α decay to 183W with a half-life over 3.2×1015 years
  14. Believed to undergo α decay to 184W with a half-life over 3.3×1018 years
  15. Believed to undergo α decay to 185W with a half-life over 3.3×1015 years
  16. Believed to undergo α decay to 186W with a half-life over 1.2×1019 years
  17. Believed to undergo α decay to 188W or ββ decay to 192Pt with a half-life over 5.3×1019 years

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. 1 2 Peters, Stefan T.M.; Münker, Carsten; Becker, Harry; Schulz, Toni (April 2014). "Alpha-decay of 184Os revealed by radiogenic 180W in meteorites: Half life determination and viability as geochronometer". Earth and Planetary Science Letters. 391: 69–76. doi:10.1016/j.epsl.2014.01.030.
  3. "Standard Atomic Weights: Osmium". CIAAW. 1991.
  4. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. Flegenheimer, Juan (2014). "The mystery of the disappearing isotope". Revista Virtual de Química. 6 (4): 1139–1142. doi:10.5935/1984-6835.20140073.
  6. 1 2 3 4 Peucker-Ehrenbrink, B.; Ravizza, G. (2000). "The marine osmium isotope record". Terra Nova. 12 (5): 205–219. Bibcode:2000TeNov..12..205P. doi:10.1046/j.1365-3121.2000.00295.x. S2CID 12486288.
  7. 1 2 3 Esser, Bradley K.; Turekian, Karl K. (1993). "The osmium isotopic composition of the continental crust". Geochimica et Cosmochimica Acta. 57 (13): 3093–3104. Bibcode:1993GeCoA..57.3093E. doi:10.1016/0016-7037(93)90296-9.
  8. Hauri, Erik H. (2002). "Osmium Isotopes and Mantle Convection" (PDF). Philosophical Transactions: Mathematical, Physical and Engineering Sciences. 360 (1800): 2371–2382. Bibcode:2002RSPTA.360.2371H. doi:10.1098/rsta.2002.1073. JSTOR 3558902. PMID 12460472. S2CID 18451805.
  9. Lowery, Chistopher; Morgan, Joanna; Gulick, Sean; Bralower, Timothy; Christeson, Gail (2019). "Ocean Drilling Perspectives on Meteorite Impacts". Oceanography. 32: 120–134. doi:10.5670/oceanog.2019.133.
  10. Selby, D.; Creaser, R. A. (2005). "Direct Radiometric Dating of Hydrocarbon Deposits Using Rhenium-Osmium Isotopes". Science. 308 (5726): 1293–1295. Bibcode:2005Sci...308.1293S. doi:10.1126/science.1111081. PMID 15919988. S2CID 41419594.
  11. 1 2 3 4 Chen, C.; Sedwick, P. N.; Sharma, M. (2009). "Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination". Proceedings of the National Academy of Sciences. 106 (19): 7724–7728. Bibcode:2009PNAS..106.7724C. doi:10.1073/pnas.0811803106. PMC 2683094. PMID 19416862.
  12. Cook, David L.; Kruijer, Thomas S.; Leya, Ingo; Kleine, Thorsten (September 2014). "Cosmogenic 180W variations in meteorites and re-assessment of a possible 184Os–180W decay system". Geochimica et Cosmochimica Acta. 140: 160–176. doi:10.1016/j.gca.2014.05.013.
  13. Cook, David L.; Smith, Thomas; Leya, Ingo; Hilton, Connor D.; Walker, Richard J.; Schönbächler, Maria (September 2018). "Excess 180W in IIAB iron meteorites: Identification of cosmogenic, radiogenic, and nucleosynthetic components". Earth Planet Sci Lett. 503: 29–36. doi:10.1016/j.epsl.2018.09.021. PMC 6398611.
  14. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  15. 1 2 Briscoe, A. D.; Page, R. D.; Uusitalo, J.; et al. (2023). "Decay spectroscopy at the two-proton drip line: Radioactivity of the new nuclides 160Os and 156W". Physics Letters B. 47 (138310). doi:10.1016/j.physletb.2023.138310. hdl:10272/23933.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.