| |||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Nb) | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring niobium (41Nb) is composed of one stable isotope (93Nb). The most stable radioisotope is 92Nb with a half-life of 34.7 million years. The next longest-lived niobium isotopes are 94Nb (half-life: 20,300 years) and 91Nb with a half-life of 680 years. There is also a meta state of 93Nb at 31 keV whose half-life is 16.13 years. Twenty-seven other radioisotopes have been characterized. Most of these have half-lives that are less than two hours, except 95Nb (35 days), 96Nb (23.4 hours) and 90Nb (14.6 hours). The primary decay mode before stable 93Nb is electron capture and the primary mode after is beta emission with some neutron emission occurring in 104–110Nb.
Only 95Nb (35 days) and 97Nb (72 minutes) and heavier isotopes (half-lives in seconds) are fission products in significant quantity, as the other isotopes are shadowed by stable or very long-lived (93Zr) isotopes of the preceding element zirconium from production via beta decay of neutron-rich fission fragments. 95Nb is the decay product of 95Zr (64 days), so disappearance of 95Nb in used nuclear fuel is slower than would be expected from its own 35-day half-life alone. Small amounts of other isotopes may be produced as direct fission products.
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da) [n 2][n 3] |
Half-life [n 4] |
Decay mode [n 5] |
Daughter isotope [n 6][n 7] |
Spin and parity [n 8][n 4] |
Isotopic abundance | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 4] | |||||||||||||||||||
81Nb | 41 | 40 | 80.94903(161)# | <44 ns | β+, p | 80Y | 3/2−# | ||||||||||||
p | 80Zr | ||||||||||||||||||
β+ | 81Zr | ||||||||||||||||||
82Nb | 41 | 41 | 81.94313(32)# | 51(5) ms | β+ | 82Zr | 0+ | ||||||||||||
83Nb | 41 | 42 | 82.93671(34) | 4.1(3) s | β+ | 83Zr | (5/2+) | ||||||||||||
84Nb | 41 | 43 | 83.93357(32)# | 9.8(9) s | β+ (>99.9%) | 84Zr | 3+ | ||||||||||||
β+, p (<.1%) | 83Y | ||||||||||||||||||
84mNb | 338(10) keV | 103(19) ns | (5−) | ||||||||||||||||
85Nb | 41 | 44 | 84.92791(24) | 20.9(7) s | β+ | 85Zr | (9/2+) | ||||||||||||
85mNb | 759.0(10) keV | 12(5) s | (1/2−) | ||||||||||||||||
86Nb | 41 | 45 | 85.92504(9) | 88(1) s | β+ | 86Zr | (6+) | ||||||||||||
86mNb | 250(160)# keV | 56(8) s | β+ | 86Zr | high | ||||||||||||||
87Nb | 41 | 46 | 86.92036(7) | 3.75(9) min | β+ | 87Zr | (1/2−) | ||||||||||||
87mNb | 3.84(14) keV | 2.6(1) min | β+ | 87Zr | (9/2+)# | ||||||||||||||
88Nb | 41 | 47 | 87.91833(11) | 14.55(6) min | β+ | 88Zr | (8+) | ||||||||||||
88mNb | 40(140) keV | 7.8(1) min | β+ | 88Zr | (4−) | ||||||||||||||
89Nb | 41 | 48 | 88.913418(29) | 2.03(7) h | β+ | 89Zr | (9/2+) | ||||||||||||
89mNb | 0(30)# keV | 1.10(3) h | β+ | 89Zr | (1/2)− | ||||||||||||||
90Nb | 41 | 49 | 89.911265(5) | 14.60(5) h | β+ | 90Zr | 8+ | ||||||||||||
90m1Nb | 122.370(22) keV | 63(2) μs | 6+ | ||||||||||||||||
90m2Nb | 124.67(25) keV | 18.81(6) s | IT | 90Nb | 4- | ||||||||||||||
90m3Nb | 171.10(10) keV | <1 μs | 7+ | ||||||||||||||||
90m4Nb | 382.01(25) keV | 6.19(8) ms | 1+ | ||||||||||||||||
90m5Nb | 1880.21(20) keV | 472(13) ns | (11−) | ||||||||||||||||
91Nb | 41 | 50 | 90.906996(4) | 680(130) a | EC (99.98%) | 91Zr | 9/2+ | ||||||||||||
β+ (.013%) | |||||||||||||||||||
91m1Nb | 104.60(5) keV | 60.86(22) d | IT (93%) | 91Nb | 1/2− | ||||||||||||||
EC (7%) | 91Zr | ||||||||||||||||||
β+ (.0028%) | |||||||||||||||||||
91m2Nb | 2034.35(19) keV | 3.76(12) μs | (17/2−) | ||||||||||||||||
92Nb | 41 | 51 | 91.907194(3) | 3.47(24)×107 a | β+ (99.95%) | 92Zr | (7)+ | Trace | |||||||||||
β− (.05%) | 92Mo | ||||||||||||||||||
92m1Nb | 135.5(4) keV | 10.15(2) d | β+ | 92Zr | (2)+ | ||||||||||||||
92m2Nb | 225.7(4) keV | 5.9(2) μs | (2)− | ||||||||||||||||
92m3Nb | 2203.3(4) keV | 167(4) ns | (11−) | ||||||||||||||||
93Nb | 41 | 52 | 92.9063781(26) | Stable | 9/2+ | 1.0000 | |||||||||||||
93mNb | 30.77(2) keV | 16.13(14) a | IT | 93Nb | 1/2− | ||||||||||||||
94Nb | 41 | 53 | 93.9072839(26) | 2.03(16)×104 a | β− | 94Mo | (6)+ | Trace | |||||||||||
94mNb | 40.902(12) keV | 6.263(4) min | IT (99.5%) | 94Nb | 3+ | ||||||||||||||
β− (.5%) | 94Mo | ||||||||||||||||||
95Nb | 41 | 54 | 94.9068358(21) | 34.991(6) d | β− | 95Mo | 9/2+ | ||||||||||||
95mNb | 235.690(20) keV | 3.61(3) d | IT (94.4%) | 95Nb | 1/2− | ||||||||||||||
β− (5.6%) | 95Mo | ||||||||||||||||||
96Nb | 41 | 55 | 95.908101(4) | 23.35(5) h | β− | 96Mo | 6+ | ||||||||||||
97Nb | 41 | 56 | 96.9080986(27) | 72.1(7) min | β− | 97Mo | 9/2+ | ||||||||||||
97mNb | 743.35(3) keV | 52.7(18) s | IT | 97Nb | 1/2− | ||||||||||||||
98Nb | 41 | 57 | 97.910328(6) | 2.86(6) s | β− | 98Mo | 1+ | ||||||||||||
98mNb | 84(4) keV | 51.3(4) min | β− (99.9%) | 98Mo | (5+) | ||||||||||||||
IT (.1%) | 98Nb | ||||||||||||||||||
99Nb | 41 | 58 | 98.911618(14) | 15.0(2) s | β− | 99Mo | 9/2+ | ||||||||||||
99mNb | 365.29(14) keV | 2.6(2) min | β− (96.2%) | 99Mo | 1/2− | ||||||||||||||
IT (3.8%) | 99Nb | ||||||||||||||||||
100Nb | 41 | 59 | 99.914182(28) | 1.5(2) s | β− | 100Mo | 1+ | ||||||||||||
100mNb | 470(40) keV | 2.99(11) s | β− | 100Mo | (4+, 5+) | ||||||||||||||
101Nb | 41 | 60 | 100.915252(20) | 7.1(3) s | β− | 101Mo | (5/2#)+ | ||||||||||||
102Nb | 41 | 61 | 101.91804(4) | 1.3(2) s | β− | 102Mo | 1+ | ||||||||||||
102mNb | 130(50) keV | 4.3(4) s | β− | 102Mo | high | ||||||||||||||
103Nb | 41 | 62 | 102.91914(7) | 1.5(2) s | β− | 103Mo | (5/2+) | ||||||||||||
104Nb | 41 | 63 | 103.92246(11) | 4.9(3) s | β− (99.94%) | 104Mo | (1+) | ||||||||||||
β−, n (.06%) | 103Mo | ||||||||||||||||||
104mNb | 220(120) keV | 940(40) ms | β− (99.95%) | 104Mo | high | ||||||||||||||
β−, n (.05%) | 103Mo | ||||||||||||||||||
105Nb | 41 | 64 | 104.92394(11) | 2.95(6) s | β− (98.3%) | 105Mo | (5/2+)# | ||||||||||||
β−, n (1.7%) | 104Mo | ||||||||||||||||||
106Nb | 41 | 65 | 105.92797(21)# | 920(40) ms | β− (95.5%) | 106Mo | 2+# | ||||||||||||
β−, n (4.5%) | 105Mo | ||||||||||||||||||
107Nb | 41 | 66 | 106.93031(43)# | 300(9) ms | β− (94%) | 107Mo | 5/2+# | ||||||||||||
β−, n (6%) | 106Mo | ||||||||||||||||||
108Nb | 41 | 67 | 107.93484(32)# | 0.193(17) s | β− (93.8%) | 108Mo | (2+) | ||||||||||||
β−, n (6.2%) | 107Mo | ||||||||||||||||||
109Nb | 41 | 68 | 108.93763(54)# | 190(30) ms | β− (69%) | 109Mo | 5/2+# | ||||||||||||
β−, n (31%) | 108Mo | ||||||||||||||||||
110Nb | 41 | 69 | 109.94244(54)# | 170(20) ms | β− (60%) | 110Mo | 2+# | ||||||||||||
β−, n (40%) | 109Mo | ||||||||||||||||||
111Nb | 41 | 70 | 110.94565(54)# | 80# ms [>300 ns] | 5/2+# | ||||||||||||||
112Nb | 41 | 71 | 111.95083(75)# | 60# ms [>300 ns] | 2+# | ||||||||||||||
113Nb | 41 | 72 | 112.95470(86)# | 30# ms [>300 ns] | 5/2+# | ||||||||||||||
114Nb[4] | 41 | 73 | |||||||||||||||||
115Nb[4] | 41 | 74 | |||||||||||||||||
116Nb[5] | 41 | 75 | |||||||||||||||||
117Nb[6] | 41 | 76 | |||||||||||||||||
This table header & footer: |
- ↑ mNb – Excited nuclear isomer.
- ↑ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ↑ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- 1 2 3 # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ↑
Modes of decay:
EC: Electron capture IT: Isomeric transition n: Neutron emission p: Proton emission - ↑ Bold italics symbol as daughter – Daughter product is nearly stable.
- ↑ Bold symbol as daughter – Daughter product is stable.
- ↑ ( ) spin value – Indicates spin with weak assignment arguments.
Niobium-92
Niobium-92 is an extinct radionuclide[7] with a half-life of 34.7 million years, decaying predominantly via β+ decay. Its abundance relative to the stable 93Nb in the early Solar System, estimated at 1.7×10−5, has been measured to investigate the origin of p-nuclei.[7][8] A higher initial abundance of 92Nb has been estimated for material in the outer protosolar disk (sampled from the meteorite NWA 6704), suggesting that this nuclide was predominantly formed via the gamma process (photodisintegration) in a nearby core-collapse supernova.[9]
Niobium-92, along with niobium-94, has been detected in refined samples of terrestrial niobium and may originate from bombardment by cosmic ray muons in Earth's crust.[10]
References
- ↑ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ↑ "Standard Atomic Weights: Niobium". CIAAW. 2017.
- ↑ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- 1 2 Ohnishi, Tetsuya; Kubo, Toshiyuki; Kusaka, Kensuke; et al. (2010). "Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon". J. Phys. Soc. Jpn. 79 (7). Physical Society of Japan: 073201. arXiv:1006.0305. Bibcode:2010JPSJ...79g3201T. doi:10.1143/JPSJ.79.073201.
- ↑ Shimizu, Yohei; et al. (2018). "Observation of New Neutron-rich Isotopes among Fission Fragments from In-flight Fission of 345MeV=nucleon 238U: Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns". Journal of the Physical Society of Japan. 87 (1): 014203. Bibcode:2018JPSJ...87a4203S. doi:10.7566/JPSJ.87.014203.
- ↑ Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
- 1 2 Iizuka, Tsuyoshi; Lai, Yi-Jen; Akram, Waheed; Amelin, Yuri; Schönbächler, Maria (2016). "The initial abundance and distribution of 92Nb in the Solar System". Earth and Planetary Science Letters. 439: 172–181. arXiv:1602.00966. Bibcode:2016E&PSL.439..172I. doi:10.1016/j.epsl.2016.02.005. S2CID 119299654.
- ↑ Hibiya, Y; Iizuka, T; Enomoto, H (2019). THE INITIAL ABUNDANCE OF NIOBIUM-92 IN THE OUTER SOLAR SYSTEM (PDF). Lunar and Planetary Science Conference (50th ed.). Retrieved 7 September 2019.
- ↑ Hibiya, Y.; Iizuka, T.; Enomoto, H.; Hayakawa, T. (2023). "Evidence for enrichment of niobium-92 in the outer protosolar disk". Astrophysical Journal Letters. 942 (L15): L15. Bibcode:2023ApJ...942L..15H. doi:10.3847/2041-8213/acab5d. S2CID 255414098.
- ↑ Clayton, Donald D.; Morgan, John A. (1977). "Muon production of 92,94Nb in the Earth's crust". Nature. 266 (5604): 712–713. doi:10.1038/266712a0. S2CID 4292459.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.