| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Xe) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring xenon (54Xe) consists of seven stable isotopes and two very long-lived isotopes. Double electron capture has been observed in 124Xe (half-life 1.8 ± 0.5(stat) ± 0.1(sys) ×1022 years)[2] and double beta decay in 136Xe (half-life 2.165 ± 0.016(stat) ± 0.059(sys) ×1021 years),[7] which are among the longest measured half-lives of all nuclides. The isotopes 126Xe and 134Xe are also predicted to undergo double beta decay,[8] but this process has never been observed in these isotopes, so they are considered to be stable.[9][10][11] Beyond these stable forms, 32 artificial unstable isotopes and various isomers have been studied, the longest-lived of which is 127Xe with a half-life of 36.345 days. All other isotopes have half-lives less than 12 days, most less than 20 hours. The shortest-lived isotope, 108Xe,[12] has a half-life of 58 μs, and is the heaviest known nuclide with equal numbers of protons and neutrons. Of known isomers, the longest-lived is 131mXe with a half-life of 11.934 days. 129Xe is produced by beta decay of 129I (half-life: 16 million years); 131mXe, 133Xe, 133mXe, and 135Xe are some of the fission products of both 235U and 239Pu, so are used as indicators of nuclear explosions.
The artificial isotope 135Xe is of considerable significance in the operation of nuclear fission reactors. 135Xe has a huge cross section for thermal neutrons, 2.65×106 barns, so it acts as a neutron absorber or "poison" that can slow or stop the chain reaction after a period of operation. This was discovered in the earliest nuclear reactors built by the American Manhattan Project for plutonium production. Because of this effect, designers must make provisions to increase the reactor's reactivity (the number of neutrons per fission that go on to fission other atoms of nuclear fuel) over the initial value needed to start the chain reaction. For the same reason, the fission products produced in a nuclear explosion and a power plant differ significantly as a large share of 135
Xe will absorb neutrons in a steady state reactor, while basically none of the 135
I will have had time to decay to xenon before the explosion of the bomb removes it from the neutron radiation.
Relatively high concentrations of radioactive xenon isotopes are also found emanating from nuclear reactors due to the release of this fission gas from cracked fuel rods or fissioning of uranium in cooling water. The concentrations of these isotopes are still usually low compared to the naturally occurring radioactive noble gas 222Rn.
Because xenon is a tracer for two parent isotopes, Xe isotope ratios in meteorites are a powerful tool for studying the formation of the Solar System. The I-Xe method of dating gives the time elapsed between nucleosynthesis and the condensation of a solid object from the solar nebula (xenon being a gas, only that part of it that formed after condensation will be present inside the object). Xenon isotopes are also a powerful tool for understanding terrestrial differentiation. Excess 129Xe found in carbon dioxide well gases from New Mexico was believed to be from the decay of mantle-derived gases soon after Earth's formation.[13] It has been suggested that the isotopic composition of atmospheric xenon fluctuated prior to the GOE before stabilizing, perhaps as a result of the rise in atmospheric O2.[14]
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da) [n 2][n 3] |
Half-life [n 4] |
Decay mode [n 5] |
Daughter isotope [n 6] |
Spin and parity [n 7][n 8] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion | Range of variation | |||||||||||||||||
108Xe[12] [n 9] | 54 | 54 | 58+106 −23 μs |
α | 104Te | 0+ | |||||||||||||
109Xe | 54 | 55 | 13(2) ms | α | 105Te | ||||||||||||||
110Xe | 54 | 56 | 109.94428(14) | 310(190) ms [105+35 −25 ms] |
β+ | 110I | 0+ | ||||||||||||
α | 106Te | ||||||||||||||||||
111Xe | 54 | 57 | 110.94160(33)# | 740(200) ms | β+ (90%) | 111I | 5/2+# | ||||||||||||
α (10%) | 107Te | ||||||||||||||||||
112Xe | 54 | 58 | 111.93562(11) | 2.7(8) s | β+ (99.1%) | 112I | 0+ | ||||||||||||
α (.9%) | 108Te | ||||||||||||||||||
113Xe | 54 | 59 | 112.93334(9) | 2.74(8) s | β+ (92.98%) | 113I | (5/2+)# | ||||||||||||
β+, p (7%) | 112Te | ||||||||||||||||||
α (.011%) | 109Te | ||||||||||||||||||
β+, α (.007%) | 109Sb | ||||||||||||||||||
114Xe | 54 | 60 | 113.927980(12) | 10.0(4) s | β+ | 114I | 0+ | ||||||||||||
115Xe | 54 | 61 | 114.926294(13) | 18(4) s | β+ (99.65%) | 115I | (5/2+) | ||||||||||||
β+, p (.34%) | 114Te | ||||||||||||||||||
β+, α (3×10−4%) | 111Sb | ||||||||||||||||||
116Xe | 54 | 62 | 115.921581(14) | 59(2) s | β+ | 116I | 0+ | ||||||||||||
117Xe | 54 | 63 | 116.920359(11) | 61(2) s | β+ (99.99%) | 117I | 5/2(+) | ||||||||||||
β+, p (.0029%) | 116Te | ||||||||||||||||||
118Xe | 54 | 64 | 117.916179(11) | 3.8(9) min | β+ | 118I | 0+ | ||||||||||||
119Xe | 54 | 65 | 118.915411(11) | 5.8(3) min | β+ | 119I | 5/2(+) | ||||||||||||
120Xe | 54 | 66 | 119.911784(13) | 40(1) min | β+ | 120I | 0+ | ||||||||||||
121Xe | 54 | 67 | 120.911462(12) | 40.1(20) min | β+ | 121I | (5/2+) | ||||||||||||
122Xe | 54 | 68 | 121.908368(12) | 20.1(1) h | EC | 122I | 0+ | ||||||||||||
123Xe | 54 | 69 | 122.908482(10) | 2.08(2) h | β+ | 123I | 1/2+ | ||||||||||||
123mXe | 185.18(22) keV | 5.49(26) μs | 7/2(−) | ||||||||||||||||
124Xe[n 10] | 54 | 70 | 123.905893(2) | 1.8(5 (stat), 1 (sys))×1022 y[2] | Double EC | 124Te | 0+ | 9.52(3)×10−4 | |||||||||||
125Xe | 54 | 71 | 124.9063955(20) | 16.9(2) h | β+ | 125I | 1/2(+) | ||||||||||||
125m1Xe | 252.60(14) keV | 56.9(9) s | IT | 125Xe | 9/2(−) | ||||||||||||||
125m2Xe | 295.86(15) keV | 0.14(3) μs | 7/2(+) | ||||||||||||||||
126Xe | 54 | 72 | 125.904274(7) | Observationally Stable[n 11] | 0+ | 8.90(2)×10−4 | |||||||||||||
127Xe | 54 | 73 | 126.905184(4) | 36.345(3) d | EC | 127I | 1/2+ | ||||||||||||
127mXe | 297.10(8) keV | 69.2(9) s | IT | 127Xe | 9/2− | ||||||||||||||
128Xe | 54 | 74 | 127.9035313(15) | Stable | 0+ | 0.019102(8) | |||||||||||||
129Xe[n 12] | 54 | 75 | 128.9047794(8) | Stable | 1/2+ | 0.264006(82) | |||||||||||||
129mXe | 236.14(3) keV | 8.88(2) d | IT | 129Xe | 11/2− | ||||||||||||||
130Xe | 54 | 76 | 129.9035080(8) | Stable | 0+ | 0.040710(13) | |||||||||||||
131Xe[n 13] | 54 | 77 | 130.9050824(10) | Stable | 3/2+ | 0.212324(30) | |||||||||||||
131mXe | 163.930(8) keV | 11.934(21) d | IT | 131Xe | 11/2− | ||||||||||||||
132Xe[n 13] | 54 | 78 | 131.9041535(10) | Stable | 0+ | 0.269086(33) | |||||||||||||
132mXe | 2752.27(17) keV | 8.39(11) ms | IT | 132Xe | (10+) | ||||||||||||||
133Xe[n 13][n 14] | 54 | 79 | 132.9059107(26) | 5.2475(5) d | β− | 133Cs | 3/2+ | ||||||||||||
133mXe | 233.221(18) keV | 2.19(1) d | IT | 133Xe | 11/2− | ||||||||||||||
134Xe[n 13] | 54 | 80 | 133.9053945(9) | Observationally Stable[n 15] | 0+ | 0.104357(21) | |||||||||||||
134m1Xe | 1965.5(5) keV | 290(17) ms | IT | 134Xe | 7− | ||||||||||||||
134m2Xe | 3025.2(15) keV | 5(1) μs | (10+) | ||||||||||||||||
135Xe[n 16] | 54 | 81 | 134.907227(5) | 9.14(2) h | β− | 135Cs | 3/2+ | ||||||||||||
135mXe | 526.551(13) keV | 15.29(5) min | IT (99.99%) | 135Xe | 11/2− | ||||||||||||||
β− (.004%) | 135Cs | ||||||||||||||||||
136Xe[n 10] | 54 | 82 | 135.907219(8) | 2.165(16 (stat), 59 (sys))×1021 y[7] | β−β− | 136Ba | 0+ | 0.088573(44) | |||||||||||
136mXe | 1891.703(14) keV | 2.95(9) μs | 6+ | ||||||||||||||||
137Xe | 54 | 83 | 136.911562(8) | 3.818(13) min | β− | 137Cs | 7/2− | ||||||||||||
138Xe | 54 | 84 | 137.91395(5) | 14.08(8) min | β− | 138Cs | 0+ | ||||||||||||
139Xe | 54 | 85 | 138.918793(22) | 39.68(14) s | β− | 139Cs | 3/2− | ||||||||||||
140Xe | 54 | 86 | 139.92164(7) | 13.60(10) s | β− | 140Cs | 0+ | ||||||||||||
141Xe | 54 | 87 | 140.92665(10) | 1.73(1) s | β− (99.45%) | 141Cs | 5/2(−#) | ||||||||||||
β−, n (.043%) | 140Cs | ||||||||||||||||||
142Xe | 54 | 88 | 141.92971(11) | 1.22(2) s | β− (99.59%) | 142Cs | 0+ | ||||||||||||
β−, n (.41%) | 141Cs | ||||||||||||||||||
143Xe | 54 | 89 | 142.93511(21)# | 0.511(6) s | β− | 143Cs | 5/2− | ||||||||||||
144Xe | 54 | 90 | 143.93851(32)# | 0.388(7) s | β− | 144Cs | 0+ | ||||||||||||
β−, n | 143Cs | ||||||||||||||||||
145Xe | 54 | 91 | 144.94407(32)# | 188(4) ms | β− | 145Cs | (3/2−)# | ||||||||||||
146Xe | 54 | 92 | 145.94775(43)# | 146(6) ms | β− | 146Cs | 0+ | ||||||||||||
147Xe | 54 | 93 | 146.95356(43)# | 130(80) ms [0.10(+10−5) s] |
β− | 147Cs | 3/2−# | ||||||||||||
β−, n | 146Cs | ||||||||||||||||||
148Xe | 54 | 94 | 85(15) ms | β− | 148Cs | 0+ | |||||||||||||
149Xe | 54 | 95 | 50 ms# | 3/2−# | |||||||||||||||
150Xe | 54 | 96 | 40 ms# | 0+ | |||||||||||||||
This table header & footer: |
- ↑ mXe – Excited nuclear isomer.
- ↑ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ↑ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ↑ Bold half-life – nearly stable, half-life longer than age of universe.
- ↑
Modes of decay:
EC: Electron capture IT: Isomeric transition n: Neutron emission - ↑ Bold symbol as daughter – Daughter product is stable.
- ↑ ( ) spin value – Indicates spin with weak assignment arguments.
- ↑ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ↑ Heaviest known isotope with equal numbers of protons and neutrons
- 1 2 Primordial radionuclide
- ↑ Suspected of undergoing β+β+ decay to 126Te
- ↑ Used in a method of radiodating groundwater and to infer certain events in the Solar System's history
- 1 2 3 4 Fission product
- ↑ Has medical uses
- ↑ Theoretically capable of undergoing β−β− decay to 134Ba with a half-life over 2.8×1022 years[11]
- ↑ Most powerful known neutron absorber, produced in nuclear power plants as a decay product of 135I, itself a decay product of 135Te, a fission product. Normally absorbs neutrons in the high neutron flux environments to become 136Xe; see iodine pit for more information
- The isotopic composition refers to that in air.
Xenon-124
Xenon-124 is an isotope of xenon that undergoes double electron capture to tellurium-124 with a very long half-life of 1.8×1022 years, more than 12 orders of magnitude longer than the age of the universe ((13.799±0.021)×109 years). Such decays have been observed in the XENON1T detector in 2019, and are the rarest processes ever directly observed.[15] (Even slower decays of other nuclei have been measured, but by detecting decay products that have accumulated over billions of years rather than observing them directly.[16])
Xenon-133
General | |
---|---|
Symbol | 133Xe |
Names | xenon-133, 133Xe, Xe-133 |
Protons (Z) | 54 |
Neutrons (N) | 79 |
Nuclide data | |
Natural abundance | syn |
Half-life (t1/2) | 5.243(1) d |
Isotope mass | 132.9059107 Da |
Spin | 3/2+ |
Decay products | 133Cs |
Decay modes | |
Decay mode | Decay energy (MeV) |
Beta− | 0.427 |
Isotopes of xenon Complete table of nuclides |
Xenon-133 (sold as a drug under the brand name Xeneisol, ATC code V09EX03 (WHO)) is an isotope of xenon. It is a radionuclide that is inhaled to assess pulmonary function, and to image the lungs.[17] It is also used to image blood flow, particularly in the brain.[18] 133Xe is also an important fission product. It is discharged to the atmosphere in small quantities by some nuclear power plants.[19]
Xenon-135
Xenon-135 is a radioactive isotope of xenon, produced as a fission product of uranium. It has a half-life of about 9.2 hours and is the most powerful known neutron-absorbing nuclear poison (having a neutron absorption cross-section of 2 million barns[20]). The overall yield of xenon-135 from fission is 6.3%, though most of this results from the radioactive decay of fission-produced tellurium-135 and iodine-135. Xe-135 exerts a significant effect on nuclear reactor operation (xenon pit). It is discharged to the atmosphere in small quantities by some nuclear power plants.[19]
Xenon-136
Xenon-136 is an isotope of xenon that undergoes double beta decay to barium-136 with a very long half-life of 2.11×1021 years, more than 10 orders of magnitude longer than the age of the universe ((13.799±0.021)×109 years). It is being used in the Enriched Xenon Observatory experiment to search for neutrinoless double beta decay.
See also
- Xenon isotope geochemistry
References
- ↑ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- 1 2 3 "Observation of two-neutrino double electron capture in 124Xe with XENON1T". Nature. 568 (7753): 532–535. 2019. doi:10.1038/s41586-019-1124-4.
- ↑ Albert, J. B.; Auger, M.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Chaves, J.; Cleveland, B.; Cook, S.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; Devoe, R.; Delaquis, S.; Dobi, A.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; et al. (2014). "Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector". Physical Review C. 89. arXiv:1306.6106. Bibcode:2014PhRvC..89a5502A. doi:10.1103/PhysRevC.89.015502.
- ↑ Redshaw, M.; Wingfield, E.; McDaniel, J.; Myers, E. (2007). "Mass and Double-Beta-Decay Q Value of 136Xe". Physical Review Letters. 98 (5): 53003. Bibcode:2007PhRvL..98e3003R. doi:10.1103/PhysRevLett.98.053003.
- ↑ "Standard Atomic Weights: Xenon". CIAAW. 1999.
- ↑ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- 1 2 Albert, J. B.; Auger, M.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Chaves, J.; Cleveland, B.; Cook, S.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; Devoe, R.; Delaquis, S.; Dobi, A.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; et al. (2014). "Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector". Physical Review C. 89 (1): 015502. arXiv:1306.6106. Bibcode:2014PhRvC..89a5502A. doi:10.1103/PhysRevC.89.015502. Archived from the original on 2023-06-13. Retrieved 2023-01-24.
- ↑ Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
- ↑ Status of ββ-decay in Xenon, Roland Lüscher, accessed online September 17, 2007. Archived September 27, 2007, at the Wayback Machine
- ↑ Barros, N.; Thurn, J.; Zuber, K. (2014). "Double beta decay searches of 134Xe, 126Xe, and 124Xe with large scale Xe detectors". Journal of Physics G. 41 (11): 115105–1–115105–12. arXiv:1409.8308. Bibcode:2014JPhG...41k5105B. doi:10.1088/0954-3899/41/11/115105. S2CID 116264328.
- 1 2 Yan, X.; Cheng, Z.; Abdukerim, A.; et al. (2024). "Searching for two-neutrino and neutrinoless double beta decay of 134Xe with the PandaX-4T experiment". Physical Review Letters. 132 (152502). arXiv:2312.15632. doi:10.1103/PhysRevLett.132.152502.
- 1 2 Auranen, K.; et al. (2018). "Superallowed α decay to doubly magic 100Sn" (PDF). Physical Review Letters. 121 (18): 182501. Bibcode:2018PhRvL.121r2501A. doi:10.1103/PhysRevLett.121.182501. PMID 30444390.
- ↑ Boulos, M. S.; Manuel, O. K. (1971). "The xenon record of extinct radioactivities in the Earth". Science. 174 (4016): 1334–1336. Bibcode:1971Sci...174.1334B. doi:10.1126/science.174.4016.1334. PMID 17801897. S2CID 28159702.
- ↑ Ardoin, L.; Broadley, M.W.; Almayrac, M.; Avice, G.; Byrne, D.J.; Tarantola, A.; Lepland, A.; Saito, T.; Komiya, T.; Shibuya, T.; Marty, B. (2022). "The end of the isotopic evolution of atmospheric xenon". Geochemical Perspectives Letters. 20: 43–47. Bibcode:2022GChPL..20...43A. doi:10.7185/geochemlet.2207. S2CID 247399987.
- ↑ David Nield (26 Apr 2019). "A Dark Matter Detector Just Recorded One of The Rarest Events Known to Science".
- ↑ Hennecke, Edward W.; Manuel, O. K.; Sabu, Dwarka D. (1975). "Double beta decay of Te 128". Physical Review C. 11 (4): 1378–1384. doi:10.1103/PhysRevC.11.1378.
- ↑ Jones, R. L.; Sproule, B. J.; Overton, T. R. (1978). "Measurement of regional ventilation and lung perfusion with Xe-133". Journal of Nuclear Medicine. 19 (10): 1187–1188. PMID 722337.
- ↑ Hoshi, H.; Jinnouchi, S.; Watanabe, K.; Onishi, T.; Uwada, O.; Nakano, S.; Kinoshita, K. (1987). "Cerebral blood flow imaging in patients with brain tumor and arterio-venous malformation using Tc-99m hexamethylpropylene-amine oxime--a comparison with Xe-133 and IMP". Kaku Igaku. 24 (11): 1617–1623. PMID 3502279.
- 1 2 Effluent Releases from Nuclear Power Plants and Fuel-Cycle Facilities. National Academies Press (US). 2012-03-29.
- ↑ Chart of the Nuclides 13th Edition
- Isotope masses from Ame2003 Atomic Mass Evaluation by Georges Audi, Aaldert Hendrik Wapstra, Catherine Thibault, Jean Blachot and Olivier Bersillon in Nuclear Physics A729 (2003).
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.