Argón

El argón es un elemento químico de número atómico 18 y símbolo Ar. Es el tercero de los gases nobles, incoloro e inerte como ellos, constituye el 0,934 % del aire seco. Su nombre proviene del griego ἀργός [argos], que significa inactivo (debido a que no reacciona).[1][2][3][4]

Cloro ArgónPotasio
 
 
18
Ar y A
 
               
               
                                   
                                   
                                                               
                                                               
Tabla completa • Tabla ampliada

Incoloro
Información general
Nombre, símbolo, número Argón, Ar, 18
Serie química Gases nobles
Grupo, período, bloque 18, 3, Elementos del bloque p
Masa atómica 39,948 u
Configuración electrónica [Ne]3s23p6
Dureza Mohs No aplicable
Electrones por nivel 2, 8, 8 (imagen)
Propiedades atómicas
Electronegatividad Sin datos (escala de Pauling)
Radio atómico (calc) 71 pm (radio de Bohr)
Radio covalente 97 pm
Radio de van der Waals 188 pm
Estado(s) de oxidación 0
1.ª energía de ionización 1520,6 kJ/mol
2.ª energía de ionización 2665,8 kJ/mol
3.ª energía de ionización 3931 kJ/mol
4.ª energía de ionización 5771 kJ/mol
5.ª energía de ionización 7238 kJ/mol
6.ª energía de ionización 8781 kJ/mol
7.ª energía de ionización 11995 kJ/mol
8.ª energía de ionización 13842 kJ/mol
Propiedades físicas
Estado ordinario Gas
Densidad 1,784 kg/m3
Punto de fusión 83,8 K (−189 °C)
Punto de ebullición 87,3 K (−186 °C)
Entalpía de vaporización 6.447 kJ/mol
Entalpía de fusión 1.188 kJ/mol
Presión de vapor No aplicable
Punto crítico 150,87 K (−122 °C)
4,898·106 Pa
Varios
Estructura cristalina Cúbica centrada en las caras
Calor específico 310 J/(K·kg)
Conductividad térmica (300 K) 0,01772 W/(K·m)
Velocidad del sonido 319 m/s a 293,15 K (20 °C)
Isótopos más estables
Artículo principal: Isótopos del argón
iso AN Periodo MD Ed PD
MeV
36Ar0,336 %Estable con 18 neutrones
38Ar0,063 %Estable con 20 neutrones
39ArSintético269 aβ-0,56539K
40Ar99,6 %Estable con 22 neutrones
42ArSintético32,9 aβ-0,60042K
Valores en el SI y condiciones normales de presión y temperatura, salvo que se indique lo contrario.

Aplicaciones

Tubo de descarga lleno de argón puro

Se emplea como gas de relleno en lámparas incandescentes ya que no reacciona con el material del filamento incluso a alta temperatura y presión, prolongando de este modo la vida útil de la bombilla, y en sustitución del neón en lámparas fluorescentes cuando se desea un color verde-azul en vez del rojo del neón. También como sustituto del nitrógeno molecular (N2) cuando este no se comporta como gas inerte por las condiciones de operación.

En el ámbito industrial y científico se emplea universalmente de la recreación de atmósferas inertes (no reaccionantes) para evitar reacciones químicas indeseadas en multitud de operaciones:

  • Soldadura por arco y soldadura a gas.
  • Fabricación de titanio y otros elementos reactivos.
  • Fabricación de monocristales —piezas cilíndricas formadas por una estructura cristalina continua— de silicio y germanio para componentes semiconductores.

El argón-39 se usa, entre otras aplicaciones, para la datación de núcleos de hielo, y aguas subterráneas (véase el apartado Isótopos).

En el buceo técnico, se emplea el argón para el inflado de trajes secos —los que impiden el contacto de la piel con el agua a diferencia de los húmedos típicos de neopreno— tanto por ser inerte como por su pequeña conductividad térmica lo que proporciona el aislamiento térmico necesario para realizar largas inmersiones a cierta profundidad.

El láser de argón tiene usos médicos en odontología y oftalmología; la primera intervención con láser de argón, realizada por Francis L'Esperance, para tratar una retinopatía se realizó en febrero de 1968.

Historia

Henry Cavendish, en 1785, expuso una muestra de nitrógeno a descargas eléctricas repetidas en presencia de oxígeno para formar óxido de nitrógeno que posteriormente eliminaba y encontró que alrededor del 1 % del gas original no se podía disolver, afirmando entonces que no todo el «aire flogisticado» era nitrógeno. En 1892 Lord Rayleigh descubrió que el nitrógeno atmosférico tenía una densidad mayor que el nitrógeno puro obtenido a partir del nitro. Rayleigh y Sir William Ramsay demostraron que la diferencia se debía a la presencia de un segundo gas poco reactivo más pesado que el nitrógeno, anunciando el descubrimiento del argón (del griego αργóν, inactivo, vago o perezoso) en 1894, anuncio que fue acogido con bastante escepticismo por la comunidad científica.

En 1904 Rayleigh recibió el premio Nobel de Física por sus investigaciones acerca de la densidad de los gases más importantes y el descubrimiento de la existencia del argón.

Abundancia y obtención

El gas se obtiene por medio de la destilación fraccionada del aire licuado, en el que se encuentra en una proporción de aproximadamente el 0,94 %, y posterior eliminación del oxígeno residual con hidrógeno. La atmósfera marciana contiene un 1,6 % de 40Ar y 5 ppm de 36Ar.; la de Mercurio un 7,0 % y la de Venus trazas. En agosto del año 2014 la sonda Rosetta de la ESA, a través de su instrumento Rosina, detectó en la coma del cometa 67P/Churyumov-Gerasimenko, a los isótopos 36Ar y 38Ar.

Isótopos

Los principales isótopos de argón presentes en la Tierra son 40Ar (99,6 %), 36Ar y 38Ar. El isótopo 40K, con un periodo de semidesintegración de 1,205×109 años, decae a 40Ar (11,2 %) estable mediante captura electrónica y mediante emisión de un positrón, y el 88,8 % restante a 40Ca mediante desintegración β. Estos ratios de desintegración permiten determinar la edad de las rocas.[5][6]

En la atmósfera terrestre, el 39Ar se genera por bombardeo de rayos cósmicos principalmente a partir del 40Ar. En entornos subterráneos no expuestos se produce por captura neutrónica del 39K y desintegración α del 37Ca.[6]

El 37Ar, con un periodo de semidesintegración de 35 días, es producto del decaimiento del 40Ca, resultado de explosiones nucleares subterráneas.[6]

Véase también

Referencias

  1. Garritz, Andoni (1998). Química. Pearson Educación. p. 856. ISBN 978-9-68444-318-1.
  2. Parry, Robert W. (1973). Química: fundamentos experimentales. Reverte. p. 703. ISBN 978-8-42917-466-3.
  3. Hiebert, E. N. (1963). «In Noble-Gas Compounds». En Hyman, H. H., ed. Historical Remarks on the Discovery of Argon: The First Noble Gas (en inglés). University of Chicago Press. pp. 3-20.
  4. Travers, M. W. (1928). The Discovery of the Rare Gases (en inglés). Edward Arnold & Co. pp. 1-7.
  5. Emsley, J. (2001). Nature's Building Blocks (en inglés). Oxford University Press. pp. 44-45. ISBN 978-0-19-960563-7.
  6. Scherer, Alexandra. «40Ar/39Ar dating and errors» (en alemán). Archivado desde el original el 9 de mayo de 2007. Consultado el 7 de marzo de 2007.

Enlaces externos

Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.